Hypotheses
Experiment
Forces and
Equations
Analogy
Motion after
Electric Field
Tasks
Exit Point
Velocity
Exit Angle
Trajectory
Impinge on Screen
Menu
Home
Hypotheses
Experiment
Forces and
Equations
Analogy
Motion after
Electric Field
Exit Point
Velocity
Exit Angle
Trajectory
Impinge on Screen
Tasks
Which velocity does the electrons have when leaving the electric field?
In a previous
chapter
we have seen, the the electrons are not accelerated in x-direction. They move with constant speed in x-direction within the plate capacitor.
We have also seen that the electrons are accelerated in y-direction. So the electron velocity in y-direction changes while moving through the plate capacitor.
Tasks:
Electrons enter an plate capacitor with \(v=4.2\cdot 10^{7}\,\rm{\frac{m}{s}}\). The capacitor is \(l=0.12\,\rm{m}\) long and the distance between the plates is \(d=0.06\,\rm{m}\). Plate Voltage is \(V_{\rm{p}}=2000\,\rm{V}\), the elementary charge is \(e=1.6\cdot 10^{-19}\,\rm{C}\) and the mass of an electron ist \(m=9.1\cdot 10^{-31}\,\rm{kg}\).
equation of motion in y-direction
$$\begin{equation}y(t)=\frac{1}{2}a_y\cdot t^2\end{equation}$$
$$\begin{equation}v_y(t)=a_y\cdot t\end{equation}$$
$$\begin{equation}a_y(t)=\frac{F}{m}=\frac{V_{\text p}\cdot e}{m\cdot \text{d}}\end{equation}$$
Calculate the acceleration \(a_y\) acting on the electrons inside the plate capacitor in
y
-direction.
Calculate the electron velocity \(v_y\) when leaving the plate capacitor.
Calculate the resultant velocity \(v_{\rm{res}}\) of the electrons when leaving the plate capacitor.
Solution
Solution
Equation (3) calculates the wanted acceleration:$$a_y=\frac{V_p\cdot e}{m\cdot d}=\frac{2000\,\text V\cdot 1.6\cdot 10^{-19}\,\text{C}}{9.1\cdot 10^{-31}\,\text{kg}\cdot 0.06\,\text{m}}=5.86\cdot10^{15}\frac{\text m}{\text s^2}$$
Equation (2) calculates the wanted velocity \(v_y\). The time \(t\) is the time the electron is inside the plate capacitor and must be calculated first. This can be done with knowledge of the length of the capacitor and the velocity in
x
-direction:$$t=\frac{l}{v_x}=\frac{0.12\,\text m}{4.2\cdot 10^7\,\frac{\text m}{\text s}}=2.86\cdot 10^{-9}\,\text s$$Plugging in both calculated values in (2):$$ v_y=a\cdot t=5.86\cdot10^{15}\,\frac{\text m}{\text s^2}\cdot 2.86\cdot 10^{-9}\,\text s=16759600\,\frac{\text m}{\text s}=1.68\cdot 10^7\,\frac{\text m}{\text s}$$
The velocity \(v_{\rm{res}}\) is calculated with $$v_{\text{res}}=\sqrt{{v_x}^2+{v_y}^2}=\sqrt{{\left(4.2\cdot 10^7\,\frac{\text m}{\text s}\right)}^2+{\left(1.68\cdot 10^7\,\frac{\text m}{\text s}\right)}^2}=4.52\cdot 10^7\,\frac{\text m}{\text s}$$
next