Use the measurement table to compare whether the wavelength $\lambda_{\text {de Broglie}}=\frac{h}{\sqrt{2\cdot m_{\text e}\cdot e\cdot V_{\text a}}}$ expected by de Broglie corresponds to the wavelength $\lambda_{\rm{Experiment}}=d\cdot \sin\left(\frac{1}{2}\cdot \tan^{-1}\left(\frac{r}{L-R+\sqrt{R^2-r^2}}\right)\right)$ that the experiment provides for a 2nd order interference maximum.
Voltage \(V_{\rm{a}}\) | \(\lambda_{\rm{de-Broglie}}\) | Radius \(r_{\rm{outer}}\) | \(\lambda_{\rm{Experiment}}\) |
---|---|---|---|
kV | \( \) | cm | \( \) |
kV | \( \) | cm | \( \) |
kV | \( \) | cm | \( \) |