Enter different pairs of values in the table at the end of the page. The table calculates the second latice spacing \(d_2\) using
$m_\text e=9.1\cdot 10^{-31}\,\text{kg}$; $e=1.6\cdot 10^{-19}\,\text{C}$; $h=6.6\cdot 10^{-34}\, \text J \cdot \text s$; $d=2.13\cdot 10^{-10}\, \text m$; $L=12.7\,\text {cm}$; $R=6.35\,\text {cm}$
Voltage \(V_{\rm{a}}\) | \(\lambda_{\rm{de-Broglie}}\) | Radius \(r_{\rm{outer}}\) | $${d_2=\frac{\lambda_{\text{de Broglie}}}{2\cdot \sin\left(\frac{1}{2}\cdot \tan^{-1}\left(\frac{r}{L-R+\sqrt{R^2-r^2}}\right)\right)}}$$ |
---|---|---|---|
\( \) | \( \) | ||
kV | \( \) | cm | \( \) |
kV | \( \) | cm | \( \) |
kV | \( \) | cm | \( \) |
Mittelwert: \(-\) |