How large is the second lattice spacing d2 in graphite crystals?
The lattice spacing d2 can be calculated with $$\begin{equation}d_\text 2=\frac{\frac{h}{\sqrt{2\cdot m_\text e \cdot e\cdot V_\text a}}}{2\cdot \sin\left(\frac{1}{2}\cdot \tan^{-1}\left(\frac{r}{L-R+\sqrt{R^2-r^2}}\right)\right)}\end{equation}$$So the acceleration voltage \(V_a\) and the corresponding radius \(r_{\rm{outer}}\) must be determined in the experiment:
$V_\text a$
6 kV
9 kV
12 kV
Radius router
1,65 cm
1,35 cm
1,15 cm
Using the measurements and the given values $m_\text e=9{.}1\cdot 10^{-31}\,\text{kg}$; $e=1{.}6\cdot 10^{-19}\,\text{C}$; $h=6{.}6\cdot 10^{-34}\, \text J \cdot \text s$; $d=2{.}13\cdot 10^{-10}\, \text m$; $L=12{.}7\,\text {cm}$; $R=6{.}35\,\text {cm}$, the lattice spacing d2 in graphite can be calculated:
The average of the calculated lattice spacings $d_\text 2 = 1{.}21\cdot 10^{-10}\,\text{m}$ in graphite is close the the literature value $d_\text 2=1{.}23\cdot 10^{-10}\,\text m$ for the second lattice spacing. This is also supported by the low relative error. We can therefore safely conclude that the outer ring on the screen is a first order interference maximum from two lattice spacings $d_\text 2=1{.}23\cdot 10^{-10}\,\text m$. This is confirmed by geometric considerations of the graphite crystal.